
Introduction
Advancedmaterialsdevelopmentand devicedesignrequire characterizationtools

to discover,optimizeandmonitor new nanomanufacturingtechniques. At the frontiers
of nanofabrication, precise characterization of nanostructures and surfaces is
necessaryfor understandingandharnessingthe newcapabilitiesof nanosystems.

To probe the deep nano-regime, we use coherent extreme ultraviolet (EUV)high
harmonicbeamsfrom tabletop femtosecondlasers. The shorter wavelengthof EUV
light canachievenear-wavelength-resolution3D imagingof surfacesand is sensitiveto
picometer-scaledisplacements. In addition,the femtoseconddurationof HHGpulsesis
fastenoughto capturethe fastestthermal,magneticandacousticdynamicsrelevantto
function in few-nm scalestructures.

In excitingrecentwork, we achieveda recordspatialresolutionof 40nm in tabletop
full-field 3D imaging using an illumination wavelength of 30 nm. Moreover, we
uncovered a new regime of collective heat dissipation that can improve thermal
transport from closely-packednanoscalehot spots. Thisnew HHGlight source,which
now extendsinto the soft X-ray region,will enablenew revolutionarycapabilitiesfor
observingnanoscalesystemson their intrinsiclengthandtime scales.
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laser field

In highharmonicgeneration,atomsundergotunnel ionizationin an intenselaserfield.
Theelectronisacceleratedin the laserfield andwhenthe laserfield reversesdirection,
the electron is driven backto its parent atom Thekinetic energygainedin the laser
field is releasedin a highenergyphoton. Photonenergiescanreachinto the extreme-
ultraviolet (EUV)andsoft-x-rayregion,now with linearandcircularpolarization.

To generatea bright high-harmonicbeam, the upconversionprocessmust be phase
matched, where the HHGemissionfrom many atoms combinesconstructively. We
accomplishthis by focusingthe laserinto a gasfilled waveguide. Bytuningthe pressure
in the waveguide,the dispersionfrom the neutral gas,free-electron plasma,and the
geometric contributions from the waveguidecombine so that both laser and HHG
fields travel at the speed of light. This results in a fully coherent beam with
femtosecond-to-attosecondpulsesthat areperfectlysynchronizedto the drivinglaser.
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Current HHGsourcescan reachsub-nm wavelengthswith photon energiesspanning
manyrelevantelement-specificabsorptionedges. Suchwavelengthsallow for element
mapping,contamination detection and identification. HHGsources,with inherently
ultrashort pulses,in combinationwith CDItechniquescancapture the fastestcharge,
spinandphonondynamicsin nano-systemsat the spatio-temporallimit.

Coherentdiffractive imaging (CDI)is a lenslessfull-field imaging technique that can achievediffraction-limited spatial
resolution. In CDI,a spatiallycoherentbeamilluminatesan object,and the intensityof the scatteredlight is collectedon a
detector. An iterative algorithm replacesany imagingoptics by solvingfor the complex-valued map of the samplethat
satisfiesboth the measureddata and one or more a-priori sample plane constraints. The resulting image contains
quantitative amplitude (material composition)and phase(thickness/height)information. PtychographyCDIis particularly
powerful becausemany diffraction patterns are collected from overlappingfields of view, rather than one diffraction
pattern as in traditional CDI. This information redundancyprovidesa powerful constraint leading to high-fidelity, high-
contrastimagesin both reflectionandtransmission-modes.

Two 45° angle-of-incidencemultilayer mirrors selecta singleharmonic(30 nm), which is focusednear the sampleby an
ellipsoidalmirror. Thesampleconsistsof titanium shapespatterned with e-beam lithographyon a siliconsubstrate. The
reconstructedamplitudeandphasecapturedetailsof the slightsurfacevariations. Theamplitudeandphaseinformation is
used to generatea 3D renderingof the surfacetopology. To characterizethe spatial resolution, we calculatea relative
modulationtransferfunction(MTF)from a higherresolutionAFMimageandmeasurethe 10%to 90%width of anedge(red
line in figure). Bothsupport40nm resolution(1.3�„). Forthe axialresolution,we cancomparethe calculatedheightfrom the
phase,purplesquare,to anAFMmeasurementwith the samespatialresolution. A lineout of the AFMandCDIheightalong
the purpledashisshown. The differencehistogrambetweenCDIandAFMfits a Gaussianwith a half width of 3.2 Å.
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We focusan ultrafast laseronto a nano-patternedultrathin film and substrate,causing
thermal expansionand launchingboth surfaceacousticwaves(SAWs)and longitudinal
acousticwaves(LAWs). EUVpulsesprobe the propagationdynamicsof both SAWsand
LAWsenablingthe characterizationof both Young'smodulusand Poisson'sratio in a
singlemeasurements,aswell asnanoscaleheatdissipationrates.
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A completedescriptionof nanoscalethermal transport is a fundamentalproblem that
hasdefied understandingfor decades. We uncovera surprisingnew regimeof nano-
scalethermal transport where, counterintuitively, nanoscaleheat sourcescool more
quickly when placed close together than when they are widely separated. This
increasedcoolingefficiencyis possiblewhen the separationbetween nanoscaleheat
sourcesis comparableto the averagemean free paths of the dominant heat-carrying
phonons. Thisfindingsuggestsnew approachesfor addressingthe significantchallenge
of thermal management in nanosystems, with design implications for integrated
circuits, thermoelectric devices, nanoparticle- mediated thermal therapies, and
nanoenhancedphotovoltaicsfor improvingclean-energytechnologies.
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